Adomian Decomposition Method to Solve the Second Order Ordinary Differential Equations

Ahmad M. D. Al-Eybani

Abstract: Adomian decomposition method (ADM) is a type of semi-analysis method that is used to derive solutions for differential equations. PDE occurs in science and engineering, such as incompressible fluid flow, and in solving the Navier-Stokes and Poisson equation. It can be used to solve Cauchy problems of PDE that have initial condition problems. George Adomian from the University of Georgia developed this method. The objective of using this method to develop a unified theory to solve partial differential and second order differential equations. It can also be used to solve problems for stochastic systems by applying it to Ito integral (Adomian, 1986).

Keywords: Adomian Decomposition - Second Order Ordinary Differential Equations - Adomian polynomials.

Title: Adomian Decomposition Method to Solve the Second Order Ordinary Differential Equations

Author: Ahmad M. D. Al-Eybani

International Journal of Mathematics and Physical Sciences Research  

ISSN 2348-5736 (Online)

Research Publish Journals

Vol. 8, Issue 2, October 2020 - March 2021

Citation
Share : Facebook Twitter Linked In

Citation
Adomian Decomposition Method to Solve the Second Order Ordinary Differential Equations by Ahmad M. D. Al-Eybani