Abstract: The main aim of this research is to investigate the impact with a point of skew on the blade of the axial fan by calculating mass flow, rotor velocity, and pressure acting on the fluid by the fan's blade to obtain optimal efficiency. It has been observed that fluctuations in mass flow due to higher rotational speed (rpm) lead to an uneven distribution of the outlet speed of the flow line located in the ventilation hole of the stator, leading to a lower noise level. The mass flow rate is directly proportional to the performance, and pressure drop of the axial fan. The present work is carried out by considering a range of angles of (0º to 6º) for its rotor blade using trial and error in the CFD technique, we observe the axial fan handles the good volume of air at relatively low pressure and delivers good efficiency in the output airflow. Consequently, the axial fan is designed to operate on high static pressure. This manuscript consists of the computation of the aerodynamic performances of symmetrical blade profiles of a fully axial fan by Computational Fluid Dynamics (CFD) methods, developing a methodology for the design of axial fans, and analysis of the designed fan with CFD methods.
Keywords: Axial fan, Pressure gain, Velocity streamline, Computational Fluid Dynamics (CFD), Mass flow rate.
Title: Analysis and Validation of Blade with Skewed Angle for Axial Fan
Author: L. H. Kenmogne Cheteu, W. Xu
International Journal of Mechanical and Industrial Technology
ISSN 2348-7593 (Online)
Research Publish Journals