Abstract: A number of commercial peer-to-peer (P2P) systems for live streaming have been introduced in recent years. The behaviour of these popular systems has been extensively studied in several measurement projects. Due to the proprietary nature of these commercial systems, however, these studies have to rely on a “black-box” approach, where packet traces are collected from a single or a limited number of measurement points, to infer various properties of traffic on the control and data planes. Although such studies are useful to compare different systems from the end-user’s perspective, it is difficult to intuitively understand the observed properties without fully reverse-engineering the underlying systems. In this project, we describe the network architecture of Zattoo, one of the largest production live streaming providers in Europe at the time of writing, and present a large-scale measurement study of Zattoo using data collected by the provider. To highlight, we found that even when the Zattoo system was heavily loaded with as high as 20 000 concurrent users on a single overlay, the median channel join delay remained less than 2–5 s, and that, for a majority of users, the streamed signal lags over-the-air broadcast signal by no more than 3 s.
Keywords: Live streaming, network architecture, peer-to peer (P2P) system.
Title: Commercial Peer-To-Peer Video Streaming To Avoid Delay Transmission
Author: S. Karthika, R. Anitha
International Journal of Computer Science and Information Technology Research
ISSN 2348-1196 (print), ISSN 2348-120X (online)
Research Publish Journals