Generalization of Exactness on Simple Ring

Dr. Sumit Kumar Dekate

Abstract: In this paper we will show that                                                                                                         

1.   Every simple ring is exact.

2.   If R be any simple ring then each direct summand of  R and R is exact.

3.   If R be any simple ring then any free left module over R is exact.

4.   Let m, n N then for any simple ring R the bimodule Hom (R , R ) is exact left M (R) and right M (R) bimodule.

5.   Let n N then for any simple ring R, End (R ) End (R )is exact.

6.   For any simple ring R and any idempotent e in R, ReR≠0 is exact.

7.   If R be any simple ring e be any idempotent in R then Hom (Re eR , R) and Hom (eR Re , R) are exact. 

Throughout this paper we will consider that all rings have unity and all modules are unitary.

Keyword: Simple Ring, Direct summand, free left module, Bimodule, Exact module, Idempotent

Title: Generalization of Exactness on Simple Ring

Author: Dr. Sumit Kumar Dekate

International Journal of Mathematics and Physical Sciences Research  

ISSN 2348-5736 (Online)

Research Publish Journals

Vol. 3, Issue 1, April 2015 - September 2015

Citation
Share : Facebook Twitter Linked In

Citation
Generalization of Exactness on Simple Ring by Dr. Sumit Kumar Dekate