Design optimization and Modal Analysis of Cantilever I-section Beam For 0.5 ton capacity of Floor Mounted Jib Crane

Vishwanath S. Chavan, Shrikant S. Waydande

Research Scholar, Assistant Professor
D. Y. Patil Institute of Engineering and Technology, Ambi, Pune, India

Abstract: Today’s industry demands versatile, efficient, and cost effective equipment while at the same time providing more flexibility along with significant savings through increased productivity. Most of the researcher’s did work on static analysis of I-section for by using Analytical and Software basis. One of them ISMB-250 beam are taken for 0.5 ton capacity of Floor mounted jib crane. The purpose behind the design of I-section cantilever beam for 0.5 ton capacity of Floor mounted jib crane is that to reduce the cost, make more efficient and to provide more flexibility. Hence instead of ISMB-250 beam, ISMB-200 beam is selected for reducing cost, more efficient and more flexibility. To check behavior of ISMB200 beam for Floor mounted jib crane in the form of stresses & deformation using Analytical, ANSYS and Experimental (Strain gauge technique). The additional part in this project is Modal analysis. The purpose of modal analysis is to measure the dynamic vibration characteristics such as (Natural frequency, deflection) by using Analytical and Experimental (FFT Analyzer). The differences error between Analytical and FEA values of stress and deformation in the form of percentage are 18% and 8%. Similarly the stresses error difference between Analytical and Experimental are approximately near to 4%. The difference error between the natural frequencies is varying from 4% to 18%. From observing the below results, for lifting 500kg load the optimum I-section beam for Floor mounted jib crane is ISMB200. Due to this selected beam cost is reduced by 30% as compare to existing (ISMB250 beam). Future scope in this project is to perform harmonic response analysis using experimental and numerical.

Keywords: Design, structural analysis, modal analysis, strain gauge technique.

I. INTRODUCTION

Now a day’s material handling system manifests anisotropic behaviour. A jib crane can help to improve material handling efficiency and work flow. Serious consideration should be given to jib cranes for applications requiring repetitive lifting and transferring of loads within a fixed arc of rotation. Jib cranes are some type of lifting and hoisting machines used in the industry commonly. Their design and manufacturing processes are developing from day to day because of economic conditions and rivalry between companies. These factors enforce them to decrease the time used for the design and production of machines. For these machines, some classification studies were done in catalogues and books. Jib cranes are either attached to a building column or cantilever vertically from an independent floor mounted column. Floor mounted jib cranes is directly fixed on the floor without any support to keep it upright. To increase the lifting capacity and minimize the cost and time for building a ship and offshore structure, block lifting with multi-cranes becomes more and more important. There are different types of jib cranes, but we analysis of floor mounted jib crane In this study, designing of I- section cantilever beam of capacity 0.5 ton for floor mounted jib crane The jib crane requires at least two times Maintenance in a year. The current task has been taken to reduce the servicing required & to ensure smooth functioning without any breakdown. The important parameters are determined such as stresses, deflection, & lateral torsional buckling behaviour of regular I section cantilever beam of floor mounted jib crane subjected to uniformly distributed load(own-weight) & a concentrated of load at free end, is done by using static analysis. This project investigate stresses deflection &
natural frequency using Analytical, finite element analyses & experimental and compare results with each other till day many researcher studied on static analyses but in this project we studied static as well as modal analysis. The following crane design has been considered according to Indian standards. The detail classification of the crane is specified. Floor mounted jib crane of 0.9m span and having load carrying capacity of 500kg is selected for the analysis. The design factor for the stresses in the crane is based on the capacity plus 25% of the rated load for impact and 15% of the rated load for the weight of the hoist and trolley. Generally, this is used all along with the average yield stress of the material to find out the type of the design. This design provides a margin to allow for variations in material properties, operating conditions, and design assumptions. No crane should be supposed to ever, in any circumstance, be weighted beyond its rated capability. Jib crane have three degrees of freedom. They are vertical, radial, and rotary. However they cannot reach into corners. They are usually used where activity is localized.

Modal analysis is a process to determine the dynamic vibration characteristics (natural frequencies and mode shapes) of a structure or a machine component while it is being designed. It has become a major alternative to provide a helpful contribution in understanding control of many vibration phenomena which encountered in practice. In this work we compared the natural frequency for I- sectional beam using analytical and experimental approach. In engineering field vibration behavior of an element plays a key role without which it is incomplete. Resonance is a key aspect in dynamic analysis, which is the frequency of any system matches with the natural frequency of the system which may lead to catastrophes or system failure. Modal analysis has become a major alternative to provide a helpful contribution in understanding control of many vibration phenomena which encountered in practice. The main purpose of modal analysis is to obtain the data that will be used for other vibrational analysis. Practical applications the modal parameters are required to avoid resonance in structures affected by external periodic dynamic loads. There are various practical applications of modal analysis over various fields of science, engineering and technology like investigations related to aeronautical engineering, automobile engineering and mechanical engineering.

Fig 1: Floor Mounted Jib Crane.

II. PROBLEM DEFINITION
To find out optimum I-type beam for 0.5 ton capacity of FMJC. To check behavior of optimum I –type beam i.e. ISMB-200 for Floor mounted jib crane in the form of stresses & deformation using Analytical, ANSYS and Experimental (Strain gauge technique). Also to check the additional parts in this project are dynamic vibration characteristics of I-section beam i.e. the natural frequency and deformation by Analytical and Experimental approach.

III. OBJECTIVES OF THE STUDY
- To reduce cost of structure, make more efficient and flexible.
- To check behavior of optimum I-beam (i.e. stresses, deformation and natural frequencies).
- To compare analytical, Numerical and experimental result.
IV. ANALYTICAL DESIGN

Performance characteristics of the Floor Mounted Jib Crane are depending on its movement

Work requirement:
Capacity: 0.5 ton, Rotation:270°, Height of lift: 1000mm, Span length: 900mm
Support: Floor
Selection of I-section: Type: Indian Standard Medium Beam (ISMB)
Material: Structural Steel

A]. Existing I-beam design for 0.5 ton capacity of FMJC.

Table 1: Specification of ISMB250 (from Indian std. catalogue)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Depth (mm)</th>
<th>Width (mm)</th>
<th>Web thick. (mm)</th>
<th>Flange thick. (mm)</th>
<th>Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISMB250</td>
<td>250</td>
<td>125</td>
<td>6.9</td>
<td>12.5</td>
<td>4750</td>
</tr>
</tbody>
</table>

Mass per unit length: 37.4Kg/m
Self-Weight: 32kg

Table 2: Properties of Structural Steel

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7850 (kg/m³)</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>2.1×10⁵ (MPa)</td>
</tr>
<tr>
<td>Tensile Ultimate Strength</td>
<td>460 (MPa)</td>
</tr>
<tr>
<td>Compressive Yield strength</td>
<td>250 (MPa)</td>
</tr>
<tr>
<td>Tensile Yield strength</td>
<td>250 (MPa)</td>
</tr>
</tbody>
</table>

Actual load carried by the beam: Taken Approximately.

- Lifted load: 500kg
- Hoist load: 150kg
- Dead load: 315kg
- Total load: 315+500+150= 965kg

1. Stress at free end.

\[I_{xx} = 51.31 \times 10^6 \text{mm}^4 \\
M= \text{total load} \times \text{length}

\[\sigma_b = \frac{M}{I_{xx}} \text{[1]} \]

\[\sigma_b = 20.756 \text{MPa} \quad \ldots \quad l = 900\text{mm} \]

\[\sigma_b = 115.316 \text{MPa} \quad \ldots \quad l = 5000\text{mm} \]

\[\sigma_b < S_{yt} \quad \ldots \quad (\text{ISO Std.}) \]

2. Stress at mid point.

\[\sigma_b = 10.378 \text{MPa} \]

\[\sigma_b = 57.65 \text{MPa} \]
3. Deflection at free end.

\[\delta_1 = \frac{WL^3}{3EI} = 0.2334mm \ldots \ldots \ldots l = 900mm \]

\[\delta_2 = \frac{WL^3}{3EI} = 38.21mm \ldots \ldots \ldots \ldots l = 5000mm \]

4. Flexural Rigidity (EI) = 10.775\times10^{12}Nmm^2

5. Factor of Safety:

\[\text{FOS} = \frac{\delta_{sy}}{\delta_{ab}} = 2.06 \]

B) Selected Beam- ISMB200

Material: Structural Steel

Table 3: Specification of ISMB200 (from Indian std. catalogue)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Depth (mm)</th>
<th>Width (mm)</th>
<th>Web thick. (mm)</th>
<th>Flange thick. (mm)</th>
<th>Area (mm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISMB200</td>
<td>200</td>
<td>100</td>
<td>5.9</td>
<td>10.8</td>
<td>3080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7850 (kg/m^3)</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>2.1\times10^5 (MPa)</td>
</tr>
<tr>
<td>Tensile Ultimate Strength</td>
<td>460 (MPa)</td>
</tr>
<tr>
<td>Compressive Yield strength</td>
<td>250 (MPa)</td>
</tr>
<tr>
<td>Tensile Yield strength</td>
<td>250 (MPa)</td>
</tr>
</tbody>
</table>

Mass per unit length: 25.4Kg/m

Self-Weight: 21kg

Capacity: 0.5 ton

Rotation: 270°, Height of lift: 1000mm, Span length: 900mm, Support: Floor

Selection of I-section: Type: Indian Standard Medium Beam (ISMB)

Trolley connected hoist model and weight CBSG(CBSP)010- 40kg

Exact Load calculation for 0.5ton capacity of FMJC:

Capacity-0.5ton

Lifted load= \[\frac{500\times9.81}{1000} = 4.9KN \]

Impacting lifted load is 25% of lifted load.

Impacting LL=0.25*4.9= 1.225KN

Total lifted load= 4.9+1.225= 6.125KN

Trolley load= \[\frac{40\times9.81}{1000} = 0.389KN \]

Trolley load due to dead load factor=1.2*0.389=0.468KN

Total Trolley load=0.468+0.389=0.857KN
Dead load=25.4Kg/m
For 5m length of span of mass =5*25.4=127Kg
Total dead load= 127*9.81=1245KN
Total load=6.125+0.857+1.245=8.227KN=8227N

Static Analysis:
1. Stress at free end.
$I_{xx} = 22.2049 \times 10^6 \text{mm}^4$, $Syt=250\text{MPa}$

$\sigma b = 34.35\text{MPa} \quad \ldots \ldots \quad l = 900\text{mm}$

$\sigma b = 165.47\text{MPa} \quad \ldots \ldots \quad l = 5000\text{mm}$

$\sigma b < Syt \quad \ldots \ldots \quad (ISO \text{ Std.})$

2. Stress at mid point.

$\sigma b = 17.17\text{MPa}$

$\sigma b = 82.73\text{MPa}$

3. Deflection at free end.

$\delta 1 = \frac{WL^3}{3EI} = 0.428mm \quad \ldots \ldots \quad l = 900\text{mm}$

$\delta 2 = \frac{WL^3}{3EI} = 48.841mm \quad \ldots \ldots \quad l = 5000\text{mm}$

4. Flexural Rigidity(EI)= 5.42x10^{12}\text{Nmm}^2

5. Factor of Safety:

$FOS = \frac{\sigma_{yt}}{\sigma b} = 1.51$

Similar procedure has follow for other two beams i.e. ISMB225 and ISMB175. Its values are shown in below table.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Stress (MPa)</th>
<th>Deflection (mm)</th>
<th>FOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISMB250</td>
<td>a) 20.76 (L=900)</td>
<td>a) 0.233</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>b)115.31 (L=5000)</td>
<td>b) 38.21</td>
<td></td>
</tr>
<tr>
<td>ISMB225</td>
<td>a) 27.42(L=900)</td>
<td>a) 0.323</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>b)138.134(L=5000)</td>
<td>b) 54.25</td>
<td></td>
</tr>
<tr>
<td>ISMB200</td>
<td>a) 34.35 (L=900)</td>
<td>a) 0.424</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>b) 165.47 (L=5000)</td>
<td>b) 48.84</td>
<td></td>
</tr>
<tr>
<td>ISMB175</td>
<td>a) 56.586(L=900)</td>
<td>a) 0.82</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>b) 303.15(L=5000)</td>
<td>b) 138.48</td>
<td></td>
</tr>
</tbody>
</table>

Factor of safety is generally taken in the range of 1.5-3 for every industrial machine or equipments. But the calculated fos is in the standard range. Calculated value of bending stress for 5000m length of beam is 165.47MPa, this getting value is less than the permissible tensile yield strength (250MPa). Hence from the above calculation, we conclude that the ISMB200 beam is safe.
Analytical Optimization Method

Fig 2: Cantilever beam.

The objective of the problem is to minimize the weight, cost or equivalently the cross-sectional area.

\[f(x) = \rho l (2BxTf) + (TwxH) \]

where \(B \) and \(H \) are width and height of the cross section, and \(Tw \) and \(Tf \) are thickness of web and flange respectively, and the design variables are \(x \rho l (2BxTf) + (TwxH) \).

Three constraints are considered. The first constraint is that the maximum stress at the fixed end of the cantilever beam is less than the yield strength \(S_{yt} = 250 \text{Mpa} \).

\[g^1(x) = \frac{MY}{I} - S_{yt} \leq 0 \]

Where \(M \) = Total load x Length, \(I=22.20\times10^6 \text{mm}^4 \), \(S_{yt}=250 \text{Mpa} \)

The second constraint is that the tip displacement does not exceed an allowable value \(\delta_{max} \),

\[\delta_{max} = \frac{1}{10} \text{the span length} \]

\[g^2(x) = \frac{wl^3}{3EI} - \delta_{max} \leq 0 \]

\[g^2(x) = -1.16 \text{mm} \]

Third constraint is the maximum shear stress does not exceed an allowable shear stress \(\tau \)

\[g^3(x) = \frac{MY}{2I} - \tau_{max} \leq 0 \]

\[g^3(x) = -36.05 \text{MPa} \]

According to max shear stress theory

\[\tau_{max} = \frac{S_{yt}}{2\rho l} = 0.5 \times S_{yt}=125 \text{MPa} \]

Hence from the above calculation, we conclude that the ISMB200 beam is optimum beam for 0.5ton capacity of floor mounted jib crane.

Numerical Analysis:

Bending stress, total deformation, mode shapes and natural frequency of a 0.5 ton capacity of cantilever floor mounted jib crane taken by ANSYS Workbench 14.5 Software.
Fig 3: Meshing I-section model

Fig 4: Applying Boundary and loading condition.

Fig 5: Von-Misses stress at load free end.
Experimental Stress Analysis:

Strain gauges are used as sensors in many systems to measure forces, moments, and the deformations of structures and materials. This experiment deals with measuring the strain in a cantilever beam through the use of four resistance strain gages; two mounted on top of the beam and two mounted below. A static load will be incremented at different locations along the beam to produce measurable strains.

Table 5: Strain gauge Specification:

<table>
<thead>
<tr>
<th>Type</th>
<th>FLA-5-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge Length</td>
<td>5mm</td>
</tr>
<tr>
<td>Gauge Factor</td>
<td>2.13 ±1%</td>
</tr>
<tr>
<td>Gauge resistance</td>
<td>120±0.3Ω</td>
</tr>
<tr>
<td>Temp. Compensation</td>
<td>11</td>
</tr>
</tbody>
</table>

Fig 6: Deformation at free end.

Fig 7: Bonded metal foil strain gauges.
Steps for Experimental Analysis:

- One end of the beam fixed with the help of C-Clamp to the seating stool as shown in above fig.
- Strain gauge paste at fixed end.
- Strain gauge wire connects to high performance portable TDS-530 digital data logger.
- Weight hang to the free end of the beam
- Take the reading from digital 30 channel data logger.
- The result is displayed on the screen of TDS-530 Data logger.

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Experimental Strain (µ)</th>
<th>Experimental stress(N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2</td>
<td>0.42</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>0.63</td>
</tr>
<tr>
<td>150</td>
<td>4</td>
<td>0.84</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>1.05</td>
</tr>
<tr>
<td>8238</td>
<td>166</td>
<td>35.75</td>
</tr>
</tbody>
</table>

V. MODAL ANALYSES

Analytical natural frequencies for optimum beam.

Theoretical Circular frequencies of I-section cantilever beam has determined by using following formulae,

$$\omega = (\beta n l)^2 \sqrt{\frac{EI}{\rho A l}} \quad \ldots \ldots \ldots [2]$$

$(\beta n l)$ = constant relative to vibration bound condition

ω = circular frequency.

Relation between natural frequency and circular frequency is,

$$fn = \frac{\omega}{2\pi} \quad \ldots \ldots \ldots \ldots [3]$$
Natural frequency

Where: \(\beta_1l = 1.875, \beta_2l = 4.694 \), and \(n \geq 3 \), \(\beta nl = (2n - 1)\pi/2 \)

1. Natural frequency at mode first
 \(F_{n1} = 15.86 \text{Hz} \) \(\beta_1l = 1.875 \)

2. Natural frequency at mode second
 \(F_{n2} = 101.39 \text{Hz} \) \(\beta_2l = 4.694 \)

3. Natural frequency at mode Third
 \(F_{n3} = 253.79 \text{Hz} \) \(\beta_3l = 7.855 \)

4. Natural frequency at mode Forth
 \(F_{n4} = 542.26 \text{Hz} \) \(\beta_4l = 10.995 \)

5. Natural frequency at mode Fifth
 \(F_{n5} = 822.036 \text{Hz} \) \(\beta_5l = 14.137 \)

- **Experimental Modal Analysis:**

 ![Experimental Set up](image)

 Fig 9: Experimental Set up.

 Steps for Experimental Analysis:
 - One end of the beam fixed with the help of C-Clamp on the Table as shown in above fig.
 - Accelerometer is connected to beam and Data input analog, the output is given to Computer.
 - Power is given to PC and FFT.
 - Open the DEWESoft7 in PC.
 - Fixed the Accelerometer at the free end of beam and applied the load by using Impact hammer at different modes. Uni-axial IEPE Accelerometer is used.
 - The result is displayed on the PC.
Experimental Results by FFT:

Material: Structural Steel

For Mode Shape1:

Frequency = 19.531Hz
Acceleration = 0.001007g = 0.0098m/s²

For Mode shape2:

Frequency = 117.1875Hz
Acceleration = 0.000404g = 0.00396m/s²

For Mode shape3:

Frequency = 244.14Hz
Acceleration = 0.000325g = 0.00318m/s²
For mode shape 4:

Frequency = 585.937 Hz
Acceleration = 0.000292 g = 0.00286 m/s^2

For mode shape 5:

Frequency = 859.78
Acceleration = 0.000496 g = 0.00486 m/s^2

Results by Analytical, Numerical and Experimental:

Table 7: Comparison of stress and deformation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analytical</th>
<th>FEA</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress (MPa)</td>
<td>34.35</td>
<td>41.59</td>
<td>35.75</td>
</tr>
<tr>
<td>Deformation (mm)</td>
<td>0.428</td>
<td>0.4733</td>
<td>0.435</td>
</tr>
</tbody>
</table>

Table 8: Comparison of frequency

<table>
<thead>
<tr>
<th>Mode</th>
<th>Analytical Frequency (Hz)</th>
<th>Experimental Frequency (Hz)</th>
<th>% of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.86</td>
<td>19.531</td>
<td>19%</td>
</tr>
<tr>
<td>2</td>
<td>101.39</td>
<td>117.187</td>
<td>12%</td>
</tr>
<tr>
<td>3</td>
<td>253.79</td>
<td>244.14</td>
<td>4%</td>
</tr>
<tr>
<td>4</td>
<td>542.36</td>
<td>585.937</td>
<td>7%</td>
</tr>
<tr>
<td>5</td>
<td>822.06</td>
<td>859.375</td>
<td>4%</td>
</tr>
</tbody>
</table>
Graphical Results:

Fig 10: Stress Analysis

Comparision of stresses (MPa)

<table>
<thead>
<tr>
<th></th>
<th>Analytical</th>
<th>FEA</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>stresses at free end</td>
<td>34.35</td>
<td>20.01</td>
<td>17.87</td>
</tr>
<tr>
<td>stresses at mid point</td>
<td>41.59</td>
<td>20.79</td>
<td>35.759</td>
</tr>
</tbody>
</table>

Fig 11: Deformation Analysis

<table>
<thead>
<tr>
<th></th>
<th>Analytical</th>
<th>FEA</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformation (mm)</td>
<td>0.428</td>
<td>0.4733</td>
<td>0.435</td>
</tr>
</tbody>
</table>

Fig 12: Natural Frequency Analysis

Structural Steel

<table>
<thead>
<tr>
<th>No. of Modes</th>
<th>Frequency Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
</tr>
</tbody>
</table>

Analytical Frequency

Experimental Frequency

Research Publish Journals
VI. CONCLUSION

The stress, deformation and natural frequency are determined by using Analytical, Numerical and Experimental approach.

1) Comparison of analytical and Numerical (ANSYS) values equivalent stress when load lifting 500kg, at free end point is 34.35MPa and 41.59MPa for length of boom is 900mm and the error between these values are 18%

2) Analytical Deformation value and Software deformation value, when load applied at free end of beam for length of beam 900mm is 0.428mm and 0.473mm and error is that 9%.

3) The difference between Analytical and Experimental stress varies from 4%.

4) The difference between Analytical and Experimental Natural frequencies varies from 4%-18%.

5) If number of mode increases, then frequency as well as acceleration of beam also increases.

6) As the Distance from Fixed end increases, frequency also increases.

7) If stress increases, reduced life of span.

8) By observing the above results, for lifting 500kg load we are taken ISMB200 beam instead of ISMB250 for FMJC.

9) Cost reduced by 30% as compare to existing beam.

REFERENCES

