
International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 7, Issue 2, pp: (124-131), Month: October 2019 - March 2020, Available at: www.researchpublish.com 

 

Page | 124 
Research Publish Journals 

 

Study of Numerical solution of Ordinary 

Differential Equation by Taylor, Euler and 

Runge-Kutta methods 

Sayed Abdul Bashir Osmani 

Head of Department of Algebra, Faculty of Mathematics 

Kabul University, Kabul, Afghanistan 

Bashirosmani868@gmail.com 

Abstract: Numerical solution methods of ordinary differential equations in numerical analysis is an important 

topic, which is usually used for many differential equations that is difficult to find their exact and analytic solution 

or the equation which cannot be represented in explicit form. There are many methods of numerical solution of 

ordinary differential equations such as; Taylor method, Euler method, Hunn method and Runge-Kutta method 

with first, second, third, fourth and higher orders respectively. Taylor's method is very accurate for numerical 

solution of differential equations, but it is rarely used because of the need for computations of successive 

derivatives. Euler's method has more errors but needs less computation. The Runge-Kutta method is a suitable 

and the most commonly used method with less computational steps and accurate calculation. The Runge-Kutta 

method is the generalized form of the Euler method which is used for numerical solution of ordinary differential 

equations. In this paper, the numerical solutions of ordinary differential equations are solved by Taylor, Euler and 

Runge-Kutta fourth-order methods and then their exact solutions are compared using tables and graphs. 
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I. INTRODUCTION 

Ordinary differential equations are one of the important and widely used techniques in mathematical modeling. However, 

not many ordinary differential equations have an analytic solution, usually it is extremely difficult to obtain and it is not 

very practical [1]. 

Differential equations are the best language for expressing many of the general laws of nature in quantum physics, 

electronics, computational chemistry and astronomy [2]. Therefore, solution of these equations is of particular 

importance. Numerical solution methods are also of particular importance in applied problems. Finding numerical 

solution of differential equations is an important topic in numerical analysis, which is usually used for many differential 

equations that is difficult to find their exact and analytic solution or the equation which cannot be represented in explicit 

form. This problem may because of the nonlinear equations or may they have coefficients that change over time. For 

example, the linear differential equations having as much as higher coefficients, the more difficult it is to solve. Some 

equations are also more difficult to solve because of more inputs under different conditions [3]. 

There are many methods like; Taylor, Euler, Heun, Multistep, Adams-Bashforth, Adams-mouton, Runge-Kutta methods 

which produce numerical approximations to solution of initial value problem in ordinary differential equation. Euler’s 

method which is the oldest and simplest method originated by Leonhard Euler in 1768 and improved Euler method, 

Runge Kutta methods described by Carl Runge and Martin Kutta in 1895 and 1905, respectively [4]. 

Therefore, finding numerical solutions of differential equations by Taylor’s method has proper accuracy but is rarely used 

because of the need for successive derivatives computation, but the fourth-order Runge-Kutta method is the most 

commonly used technique in numerical solution of differential equations. 
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II. LITERATURE REVIEW 

For finding numerical solution of ordinary differential equation in general, each numerical method has its own advantages 

and disadvantages of use [4]. 

Taylor’s method is one of the best methods and have proper accuracy but rarely used because of the need successive 

derivatives calculations [5]. 

Runge–Kutta methods have been presented for the integration of linear systems of ordinary differential equations with 

constant coefficients. when the step size is limited by stability, then the fourth-order method is the most suitable [6]. 

Runge-Kutta method and Usmani Agarwal method are compared with a new method for numerical solution of three 

problems and the result shows that in all three problems with step size of 0.1h  and 0.05h   the accuracy of new 

method is more than Usmani Agarwal and Runge Kutta methods but with step size of h=0.2 Usmani Agarwal method has 

more accuracy than the new method [7]. 

Numerical methods for systems of first order ordinary differential equations are tested on a variety of initial value 

problems. In this case Runge-Kutta methods are not competitive, but fourth or fifth order methods of this type are best for 

restricted classes of problems in which function evaluations accuracy requirements are not very stringent [8]. 

Numerical solution of linear and nonlinear equations are compared with Adomian decomposition and Runge-Kutta 

methods and the result shows that Adomian decomposition method is very powerful [9]. 

Adams-Moulton and Runge-Kutta-Merson Methods which are used for solving initial-value problems in ordinary 

differential equations are improved in case of efficiency by the Modified Taylor method based on three derivatives [10]. 

Taylor's method is accurate but it is less commonly used because of its successive derivatives computation. The Euler’s 

method is also a suitable method, but the error is more in this method. The Runge-Kutta method has different order and is 

more accurate than other methods and has less error. 

III. NUMERICAL SOLUTION METHODS 

A. Taylor’s method 

For finding the answer of differential equation ( , )y f x y  with initial-value 0 0( )y x y  in closed interval [ , ]a b we 

follow [11]: 

I. Partition the interval [ , ]a b into n equal parts with length
b a

h
n


 . 

0 , , ( ) ( ) ,n n nx a x b y x y a nh x a nh       

II. With ny  we obtain numerical value 1( )ny x   i.e. 1ny  from following formula: 

2
( 1)

1 ( , ) ( , ) ... ( , ) , 0,1,2,..., 1
2! !

p
p

n n n n n n n n

h h
y y hf x y f x y f x y n n

p




        

e.g. find the numerical solution  1.5y  of ordinary differential equation 2 , (1) 1y xy y   for 4P  with step size 0.1h   

by Taylor’s method. 

Sol. Since 0 01, 1x y   and ( , ) 2f x y x y   then we expand Taylor’s series up to forth order: 

2 3 4

1 ( , ) ( , ) ( , ) ( , ) , 0,1,2,3
2! 3! 4!

n n n n n n n n n n

h h h
y y hf x y f x y f x y f x y n

         

By differentiating first up to forth order of function ( , ) 2f x y x y   at the point 0 0( , ) (1,1)x y   we have: 

(4)
0 0 0 02 , 6 , 20 , 76y y y y       

Now we put these values in Taylor’s series, then for 0n  we obtain value 1y : 
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2 3 4

1 0 0 0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , ) 1.2336496
2! 3! 4!

h h h
y y h f x y f x y f x y f x y         

i.e.           .     . 

By differentiating first up to forth order of function ( , ) 2f x y x y   at the point 1 1( , ) (1.1,1.23365)x y   we have: 

(4)
1 1 1 12.71403 , 8.438166 , 29.4200852 , 115.35318344y y y y       

Now we want to find value of 2y such that 1 0 1.1x x h    then according to Taylor series for 1n   we have: 

2 3 4

2 1 1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , ) 1.55262783655
2! 3! 4!

h h h
y y h f x y f x y f x y f x y         

i.e.           .     . 

Similarly, we get the values of 3 4 5, ,y y y  after calculation as followings: 

3 4 51.9936 , 2.6116 , 3.4902y y y    

The Taylor’s method for numerical solution of  1.5y in ordinary differential equation 2 , (1) 1y xy y    with step size 

0.1h  for 4P  with exact solution and absolute error is shown in table 1. 

TABLE I: Numerical solution of equation y' = 2xy, y(1) = 1 by Taylor’s method with step size h=0.1 

Absolute Error Yn(Taylor) Exact Value Xn 

000000 000000 000000 0000 

0.0001 1.2336 003..1 0000 

0.0001 1.5526 005531 0030 

0.0001 0099.1 0099.1 00.0 

0.0001 301001 301001 00.0 

000003 .0.903 .0.90. 0050 

Graph of numerical and exact solution of above equation for  1.5y by Taylor’s method is as following [2]. 

 

Figure I: Graph of Numerical and exact solution of equation y' = 2xy, y(1) = 1 for y(1.5) by Taylor’s method. 
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B. Euler’s method 

If we put 1p  in Taylor’s method, then Euler’s method will be obtained which has the formula, 1 ( , )n n n ny y h f x y  

such that f is the function which is obtained from equation  ,y f x y  , h is a positive number or difference between nx  

and 1nx  . Values of 1 2, ,..., ny y y are numerical solution of  y x at 1 2, ,..., nx x x . 

Therefore, Euler’s method is the same as Taylor’s method [12]. 

e.g. find the numerical solution  1.5y  of ordinary differential equation 2 , (1) 1y xy y   with step size 0.1h   by 

Euler’s method. 

Sol. Since 0 01, 1x y   and ( , ) 2f x y x y  , then by Euler’s formula we have, 1 ( , )n n n ny y h f x y   for 0,1, 2,3, 4n   

we calculate the values of 1 2 3 4 5, , , ,y y y y y , then:  

1 2 3 4 51.2 , 1.464 , 1.81536 , 2.28735 , 2.92781y y y y y      

The numerical solution of  1.5y in ordinary differential equation 2 , (1) 1y xy y    with step size 0.1h   by Euler’s 

method with exact solution and absolute error is shown in table 2. 

TABLE II: Numerical solution of equation y' = 2xy, y(1) = 1 by Euler’s method with step size h=0.1 

Absolute Error Yn(Euler) Exact Value Xn 

000000 000000 000000 0000 

000..1 003000 003..1 0000 

000..1 00.1.0 005531 0030 

0001.. 00.05. 0099.1 00.0 

00.3.. 303.1. 301001 00.0 

005131 30931. .0.90. 0050 

From table 1, We can observe that absolute errors by Euler’s method are more than Taylor’s method. To reduce the errors, 

h  should be considered small. But Euler's method has less calculation complexity. 

The Following graph depicts the numerical and exact solution of above differential equation for  1.5y by Euler’s method 

[2]. 

 

Figure II: Graph of Numerical and exact solution of equation y' = 2xy, y(1) = 1 for y(1.5) by Euler’s method. 
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C. Fourth Order Runge-Kutta Method 

We start from ordinary differential equation  ,y f x y   with initial-value  0 0y x y , the following formula is the 

Euler’s method for numerical solution of ordinary differential equation [13]. 

   1 , ...................... 1n n n ny y hf x y    

Such that f is the function which is obtained from equation  ,y f x y  . h is a positive number or difference between nx  

and 1nx  . Values of 1 2, ,..., ny y y are numerical solution of  y x at 1 2, ,..., nx x x  [14]. 

Basically, all Runge-Kutta methods are generalizations of the following basic Euler formula [7] [15]: 

   1 1 1 2 2 ... ....................... 2n n m my y h w k w k w k       

Values of 1 2, ,..., , 1, 2,3,...,mw w w i m are constant that generally satisfy 1 2 ... 1mw w w    and ( 1, 2,3,..., )ik i m the 

function f evaluated at a selected point  ,x y . The number m is called the order of the method. 

Suppose if 11, 1m w  and  1 ,n nk f x y , then we get the familiar Euler formula  1 ,n n n ny y h f x y   . Hence Euler’s 

method is said to be a first order Runge-Kutta method [16]. 

If we select 1,2,3,4m  in (2), then formula (3) with constants 1 2 3 4 1 2 3, , , , , ,w w w w    and 1 2 3 4 5 6, , , , ,      are 

called fourth order Runge-Kutta method. 

1 1 1 2 2 3 3 4 4( ).............(3)n ny y h w k w k w k w k       

Where, 

1 ( , )n nk f x y  

2 1 1 1( , )n nk f x h y hk     

3 2 2 1 3 2( , )n nk f x h y hk hk       

4 3 4 1 5 2 6 3( , )n nk f x h y hk hk hk         

In accordance with fourth degree polynomial of Taylor’s series of equation system from above parameters eleven 

equations and thirteen unknowns will be formed which has infinite solutions. We can get the values of parameters after 

solution of equation system as follows [16]: 

1 1 2 3 4( 2 2 )
6

n n

h
y y k k k k       

1 ( , )n nk f x y  

 
2 1

1 1
( , )

2 2
n nk f x h y hk    

3 2

1 1
( , )

2 2
n nk f x h y hk    

    4 3( , )n nk f x h y hk    

e.g. find the numerical solution  1.5y  of ordinary differential equation 2 , (1) 1y xy y   with step size 0.1h   by fourth 

order Runge-Kutta method. 

Sol. For the sake of illustration let us compute the case when 0n  , from above formula we have: 

1 2 3 42 , 2.31 , 2.34255 , 2.715361k k k k     
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Then 1 0 1 2 3 4

0.1 0.1
( 2 2 ) 1 [2 2(2.31) 2(2.34255) 2.715361] 1.23367435

6 6
y y k k k k            

 i.e.           .     . 

Similarly, values of 2 3 4 5, , ,y y y y  with exact solution and absolute error is shown in table 3 [17]. 

TABLE III: Numerical solution of equation y'=2xy, y(1)=1 by 4
th

 order Runge-Kutta method with step size h=0.1 

Absolute Error Yn(RK4) Exact Value Xn 

000000 000000 000000 0000 

000000 003..1 003..1 0000 

000000 005531 005531 0030 

000000 0099.1 0099.1 00.0 

000000 301001 301001 00.0 

000003 .0.903 .0.90. 0050 

It can be observed in Table 3 that absolute error of the numerical solution of equation by fourth-order Rang-Kutta method 

is zero or close to zero [16]. 

Following graph is the numerical and exact solution of above differential equation for  1.5y by fourth order Runge-

Kutta method [2]. 

 

Figure III: Graph of Numerical and exact solution of equation y' = 2xy, y(1) = 1 for y(1.5) by fourth order Runge-

Kutta method. 

IV. COMPARISON OF NUMERICAL SOLUTION METHODS 

A. Comparison of Numerical Solutions of Differential Equation 2 , (1) 1y xy y    by Taylor, Euler and Fourth-

Order Rang-Kutta Method 

The main criteria for comparing methods are the accuracy of the answers and the Volume rate of computation [18]. 

Table 4 shows the comparison of Numerical and exact solution of ordinary differential equation 2 , (1) 1y xy y   with 

step size 0.1h   according to absolute errors by the above three methods. 
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TABLE IV: Numerical solution of equation y'=2xy, y(1)=1 by Taylor, Euler and fourth order Runge-Kutta method 

with step size h=0.1 

Error Yn(RK4)  Error Yn(Euler)  Error Yn(Taylor) Exact Value Xn 

000000 000000  000000 000000  000000 000000 000000 0000 

000000 003..1  000..1 003000  0.0001 1.2336 003..1 0000 

000000 005531  000..1 00.1.0  0.0001 1.5526 005531 0030 

000000 0099.1  0001.. 00.05.  0.0001 0099.1 0099.1 00.0 

000000 301001  00.3.. 303.1.  0.0001 301001 301001 00.0 

000003 .0.903  005131 30931.  000003 .0.903 .0.90. 0050 

 

Figure IV: Graph of Numerical and exact solution of equation y' = 2xy, y(1) = 1 for y(1.5) by Taylor, Euler and  

fourth order Runge-Kutta method. 

V. CONCLUSION 

In this paper Taylor, Euler and Fourth-Order Rang-Kutta Methods for numerical solution of ordinary differential 

equations and the comparison of numerical solutions of differential equation 2 , (1) 1y xy y    by mentioned methods 

are discussed and the result shows that Taylor’s method has more accuracy but it requires long calculations, Euler’s 

method is suitable method with less calculation but absolute errors in Euler’s method is more than other two methods and 

this is one of the disadvantages of Euler’s method. 

To reduce the errors, the value of h  should be chosen small. Comparison of numerical and exact solutions shows that the 

solution of differential equation by fourth-order Runge-Kutta method is very close to the exact equation and has less error. 

Change of value h have effect on the numerical solution of differential equation by fourth order Runge-Kutta method, it 

means if the value of h is selected small then numerical solution errors according exact errors will be less. The problem 

with choosing a small value for h by fourth order Runge-Kutta method is that, it has more calculation and takes more 

time. The advantage of choosing a small value for h  is that the obtained solution has high accuracy and close to the 

general solution. If the value of h is chosen large then the long calculation is prevented. 
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