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Abstract: Fractional calculus is widely used in many scientific fields. This paper uses a new method to study 

fractional integral calculus. Based on the Jumarie type of modified Riemann-Liouville (R-L) fractional derivative, 

we make use of a new multiplication and some techniques include integration by parts for fractional calculus to 

solve some problems of fractional integral. The modified Jumarie’s R-L fractional derivative is closely related to 

classical calculus, which can make the fractional derivative of constant function to zero. Seven kinds of special 

fractional integral problems are provided, and the results we obtained are the generalizations of classical integral 

problems. Furthermore, Mittag-Leffler function plays an important role in this study, which is similar to the 

exponential function in traditional calculus. On the other hand, several examples are given to illustrate our results.   
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I.   INTRODUCTION 

In recent decades, the applications of fractional calculus in various fields of science is growing rapidly, such as applied 

mathematics, physics, mathematical biology, mechanics, engineering, elasticity, dynamics, control theory, electronics, 

modelling, probability, finance, economics, chemistry, etc [1-14]. But the definition of fractional derivative is not unique, 

many authors have given the definition of fractional derivative. The common definition is Riemann-Liouville (R-L) 

fractional derivative [15]. Other useful definitions include Caputo fractional derivative [16], Grunwald-Letnikov 

fractional derivative [17], Jumarie’s modification of R-L fractional derivative [18-19]. Riemann-Liouville definition the 

fractional derivative of a constant is non-zero which creates a difficulty to relate between the classical calculus. To 

overcome this difficulty, Jumarie [19] modified the definition of fractional derivative of Riemann-Liouville type and with 

this new formula, we obtain the derivative of a constant as zero. Thus, it is easier to connect fractional calculus with 

classical calculus by using this definition. On the other hand, by using the Jumarie modified definition of fractional 

derivative, it is obtained that the derivative of Mittag-Leffler function is Mittag-Leffler function itself. Like the classical 

derivative, the derivative of exponential function is exponential function itself. Therefore, the modified R-L fractional 

derivative of Jumarie type has a conjugate relationship with classical calculus. In many cases, it is easy to solve the 

fractional differential equations based on Jumarie fractional derivative [23-29]. 

In this paper, based on the Jumarie’s modified R-L fractional derivatives, a new fractional function multiplication is 

defined, and several fractional integral problems are studied by using some methods include integration by parts for 

fractional calculus. In fact, these results are the generalizations of classical calculus. In addition, some examples are 

provided to demonstrate the advantage of our results. This article studies the following seven types of fractional integrals: 
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where           are real numbers,      , and  (  ) is a continuous function. 

II.   PRELIMINARIES 

First, we introduce the definition of fractional derivative used in this paper. 

Definition 2.1: Let   be a real number and     be positive integers. The Jumarie type modified R-L fractional 

derivatives ([19]) is defined by  
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dt is the gamma function defined on    . Moreover, we define the fractional integral of ( )  
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  )[ ( )], where     and  ( ) is called  -fractional integrable function.   

Proposition 2.2 ([20]):  Assume that       are real numbers and        then 
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Definition 2.3 ([21]):  The Mittag-Leffler function is defined by 

  ( )  ∑
  

 (    )

 
   ,                                                                             (11) 

where     is a real number,    , and   is a complex variable. 

Definition 2.4 ([20]): Suppose that       and   is a real variable. Then   ( 
 ) is called the  - fractional exponential 

function, and the period of   (  
 ) is denoted as 𝑇 . Moreover, the  -fractional cosine and sine function are defined as 

follows: 
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On the other hand, we define the  -fractional logarithm function as 
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the  -fractional arccot function is 
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where |  |   . 

Next, we introduce a new multiplication of fractional functions. 

Definition 2.5 ([22]): Let   be a complex number,      ,       be non-negative integers, and       be real numbers, 
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Definition 2.7: Let ( (  ))
  
  (  )     (  )  be the   times product of the fractional function  (  ) . If 

 (  )   (  )   , then  (  ) is called the   reciprocal of  (  ), and denoted as ( (  ))
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Theorem 2.9 (integration by parts for fractional calculus):  Let      ,     be real numbers, then 
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III.   MAIN RESULTS 

In the following, we discuss seven kinds of fractional integral problems. 

Theorem 3.1  Suppose that           are real numbers,        , and      . Then 
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Theorem 3.2  If     are real numbers,        and  (  ) is a continuous function. Then 
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It follows that the desired result holds.                                                                                                                 q.e.d. 

Theorem 3.3  Let           be real numbers,     , and      .  
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Theorem 3.4  If      , 𝑇  is the period of   (  
 ), and  (  ) is a continuous function. Then 
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Theorem 3.5  Assume that           be real numbers,    , and      . 
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Theorem 3.6  If       be real numbers,    , and      . Then 
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IV.    EXAMPLES 

Example 4.1  Using Theorem 3.1 yields 
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Example 4.2  It follows from Theorem 3.2 that 
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for any positive integer  . 

Example 4.3  By Theorem 3.3, we have 
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Example 4.4  We have the following result from Theorem 3.4, 
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Example 4.5  Using Theorem 3.5, we obtain 
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Example 4.6  From Theorem 3.6, we get that 
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And 
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V.   CONCLUSION 

In this present paper, a new multiplication and several techniques that include integration by parts for fractional calculus 

is used to evaluate some fractional integrals. In fact, the application of integration by parts for fractional calculus is 

extensive, and can be used to easily solve many problems of fractional calculus and fractional differential equations. In 

the future, we will make use of this theory to expand our research field to applied mathematics and fractional calculus. 
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